

IRAL

V

Robotics in agriculture

Jurij Rakun

Contents

- Advantages of using robots in agriculture
- The state of precision farming in Slovenia (and wider)
- The development / readiness of Field robots
- Education / qualification of future research / support personal
- Rovitis a prototype example

IRAL

Why should we use robots in agriculture?

Advantages

Faculty of Agriculture and Life Sciences

- Replace human labour
- The work is done faster
- With a higher degree of accuracy
- Safer use (in case of hazardous chemicals)

University of Maribor

- Possible use in less favourable conditions
- Autonomous operation
- Economic advantage

Faculty of Agriculture and Life Sciences

Economic advantage - calculation

Problem - Costs

Case study for 1 hectare (= $10'000 m^2$)

H

In 1 hectare, considering a row length of 250m and row width of 2.6m, exists usually 15 rows

 $\left(\frac{10000}{250*2.9} \approx 13\right)$, in a <u>fully mechanized vineyard</u>.

Taking in consideration a FENDT 207V VARIO with average speed of 5 km/h and fuel consumption 0.214 kg/KWh. The used fuel per hectare is:

> $\frac{119 \ km}{5 \ km/h} \approx 23,8h$ 23,8h * 12,81 $\frac{L}{H}$ = 304,88 L

Fuel cost: 304,88L * 0.803 €/L = 244,82 €

Human Labour:
$$44.5 \frac{H}{hectare} * 1 hectare * 25 \frac{\epsilon}{H} = 667,5 \epsilon$$

Case study for 1 hectare (= $10'000 m^2$)

In 1 hectare, considering a row length of 250m and row width of 2.8m, exists usually 14 rows $\left(\frac{10000}{250*2.8} \approx 14\right)$, in a **partially mechanized vineyard**.

Taking in consideration a small diesel machine with average speed of 4 km/h and fuel consumption 4 L/H. The used fuel per hectare is:

$$\frac{101 \ km}{4 \ km/h} \approx 25,25h$$

$$25,25h * 4\frac{L}{H} = 101 L$$

Fuel cost: 101L * 0.803 €/L = 81,103 €

<u>Human Labour</u>: $4 \frac{H}{hectare} * 1 hectare * 25 \frac{\epsilon}{H} = 100\epsilon$

TOTAL: 181,10 €/*hectare*

Matteo Pantano +9699.6€ +10722,6€ Slide 9 **REVENUE: REVENUE:** August 28, 2018 +8067,28 €/hectare +9341,5 €/hectare TOTAL: TOTAL: DIFFERENTIAL (Source: Matteo Pantano, AGRA2018) +1274,22 €/hectare **PROFIT:**

The state of precision farming in Slovenia (and wider)?

The state of PF

(vir: Transfarm 4.0, Interreg Central Europe, CE-1550)

- State: 57.5 % of the respondent did not yet implement PFT, 20 % are starting to, 12.5 % are using on regular basis, 5 % are not interested in PFT
- Main obstacles: initial investment (87.5 %), technical support (62.5 %), compatibility (60 %), maintenance (75 %).
- Benefits: less labour (76 %), higher quality (74 %), usefulness-reliabilitytraceability (62 %).
- Changes: policy (80 %), education(70 %), compatibility (35 %).

Reference: Rogers, 1983

ΡΔΙ

The development / readiness of Field robots ?

Challenges

- Safety
- Reliability and robustness
- Intuitive and easy tu use
- Uninterrupted operation (time, weather,...)
- Ability to work in changing environment
- Operation in uncontrolled environment

Supervised environment

- A solution for insufficient work force and a way for production optimization.
- NL: in 2019 11 % of greenhouse owners use robots, 8 % in 2018.
- Used for:
 - Plant protection agents application (25 %)
 - Planting and harvesting (22 %)
 - Logistics (15 %)
- Commercially available solutions. We can influence where and how to capture data.

Faculty of Agriculture and Life Sciences

Field robots

Company - Robot	Intended for	Format	Drive	GPS	LIDAR	Vision
SITIA - Trektor	Vineyards, Orchards, Fields	Big	Hybrid	YES, RTK	NO	NO
Ecorobotis - AVO	Fields	Big	Electric	YES	NO	YES
AGROINTELLI - Robotti	Fields	Big	ICE	YES, RTK	YES, multichannel	YES
Instar - Trooper	Horticulture, logistika	Small	Electric	YES	NO	YES
Bakus - ViTiBOT	Vineyards, Orchards, Fields	Big	Electric	YES	NO	YES
VineScout	Vineyards	Small	Electric	YES	YES	YES
Naio – TED, Dino, OZ	Vineyards, Orchards, Fields	Big, Big, Small	Electric	YES, RTK	YES	YES
Meropy - SentiV	Fields	Small	Electric	YES	NO	YES
Rhoban - E-Tract	Fields	Big	Electric	YES, RTK	YES	NO
Ag. Giorgio Pantano - ROVITIS	Vineyards	Big	ICE	YES, RTK	YES, multichannel	YES, visual odometry
Farmbeast	Fields	Small	Electric	NO	YES, multichannel	YES, weed detection

Instar - Trooper

Faculty of Agriculture

and Life Sciences

 Use: logistics in greenhouses – to distribute or to re-group plants in pots.

University of Maribor

- Autonomous operation the robot is thought what to do and then repeats the operation.
- Sensors: LIDAR
- Safety: uses AI methods to control the behaviour of the robot.

Naio technologies

- Naio is one of the first companies to commercially offer field robots and cooperates with farmers to solve problems.
- Products:
 - OZ weeding robot
 - TED vineyard robot
 - DINO vegetable robot
- All three platforms use electric driven platforms.
- Sensory systems: RTK GPS, LIDAR, cameras

Faculty of Agriculture

and Life Sciences

• Hybridni drive (diesel + electric for 24/7 operation)

University of Maribor

- Adjustable dimensions (Vineyards, Fields,...)
- Standard three-point hitch (cat. 2)
- Sensors: RTK GPS
- Safety: bumpers + sensors

IRAL

BACUS - VITIBOT

Faculty of Agriculture and Life Sciences

- 100 % Electric (80 kWh ≈ 10 h)
- Use: Vineyards, with inclination up to 45°
- Sensors: 8 x IR 3D camera, 2 x RTK GPS and 2 x IMUs

University of Maribor

 Safety: 8 x bumpers, 4 x sensors in 6 x emergency OFF switches

ΡΔΙ

Education / qualification for future personnel?

Field Robot Event

Faculty of Agriculture

and Life Sciences

111

University of Maribor

- 4th place in weed detection–
 Field robot event 2010 (Braunschweig, Germany)
- 1st place in Freestyle– Field robot event 2012 (VenIo, Netherland)
- 3rd place overall Field robot event 2013 (Herning, Denmak)
- 3rd place in basic navigation - Field robot event 2014 (Bernburg-Stranzdfeld, Germany)
- 4th place in basic navigation-Field robot event 2018 (Bernburg-Stranzdfeld, Germany)
- 4th place in weed elimination -Field robot event 2018 (Bernburg-Stranzdfeld, Germany)
- 4th place overall Field robot event 2018 (Bernburg, Germany)
- 1st place in Freestyle Field robot event 2019 (Hohenheim, Germany)

Faculty of Agriculture and Life Sciences

FRE – tasks and requirements

• Tasks:

University of Maribor

- 1st task Basic navigation
- 2nd task Advance navigation
- 3rd task weed (object) detection
- 4th task weed (object) elimination (handling)

IRAL

- Freestyle
- Robot
 - Custom build hardware
 - Custom build software

îîî

Študentski projekt – avtonomni robot

Rovitis – a prototype example

Faculty of Agriculture

and Life Sciences

Starting point

- Platform
 - DODICH loader
 - Wheels, SKID STEER drive
- Sensors
 - 2D LIDAR, MEMS IMU, odometry
- Software
 - Linux + Programs in C++

Mid phase

University of Maribor

- Platform
 - DODICH loader
 - Wheels, SKID STEER drive
- Sensors
 - 2D LIDAR, MEMS IMU, odometry, **RTK GPS**
- Software
 - LINUX + ROS + additional algorithms (row following)

Currently

- Platform
 - ENERGREEN platform
 - Tracks, SKID STEER drive
 - Sensors
 - **3D LIDAR**, MEMS IMU, odometry, RTK GPS
 - Software
 - LINUX + ROS + additional algorithms (path planning, path following, localization, FieldSLAM)

IRAL

Faculty of Agriculture and Life Sciences

ROVITIS 4.0 – vineyard robot

FONDO EUROPEO AGRICOLO PER LO SVILUPPO RURALE: L'EUROPA INVESTE

NELLE ZONE BUBAI

Confagricoltura Veneto

Questions?

Thank you!

