
Architecting IoT-based Farm Management Information Systems

16 September 2020 Virtual Meeting

viralerasmus.org

Prof.dr. Bedir Tekinerdoğan

Wageningen University, Chair Information Technology, Wageningen, The Netherlands

bedir.tekinerdogan@wur.nl https://linkedin.com/in/bedir

Agenda

Agriculture teaching staff has a great need and is willing to beam novelies about application of ICT technologies in agriculture. This is also one of the most important goole of the Enomus + VIRAL project.

Due to health security (COVID 19), the First Educational seminar on BCT in agriculture in a series of trainings within the VIRAL project will be organized online on September 16, 2020. The lecturers are professors and researchers from the Information Technology Group of the University of Wageningen.

Through the introductory workahop, 5 lectures will be presented with logars of importance for ICT in agriculture - from design to practical application (see table below). The verdeline intended primarily for tracking staff of higher education institutions in Bonia and Herzogovina and Montenegro, but also for other interested individuals, primarily participants in the VIRAL project, as well as representatives of the business sector and students in master's and doctoral studies.

The activity is implemented within the work package 2 (WP 2.1) whose escentinators are the University of Wagaringers and the University of Donja Gorica.

In order to access the platform on which the workshop will be organized, information will be provided to all interested parties in a timely manner. We invite you to take part in this event.

Co-funded by the Erasmus+ Programme of the European Union

Background

Prof. Tekinerdogan received his MSc degree (1994) and a PhD degree (2000) in Computer Science, both from the University of Twente. The Netherlands. From 2003 until 2008, he was a faculty member at the University of Twente, after which he joined Bilbent University until 2015. At Bilkent, he has founded and led the Bilkent Software Engineering Group. which aimed to foster research and education on software engineering in Turkey. Currently, he is a full professor and chair of the Information Technology group at Wegeningen University, The Netherlands.

He has more than 25 years of experience in information technology and software/systems engineering. He is the author of more than 300 peer-reviewed scientific papers. He has been active in dozens of national and international research and consultancy projects with various large software companies, whereby he has worked as a principal researcher and leading software/system architect. Hence, he has got broad experience in software and systems engineering in different domains such as consumer electronics, enterprise systems, automotive systems, critical infrastructures, cyber-physical systems, satelike systems, defense systems, production line systems, command and control systems, physical protection systems, radar systems, unart metering systems, energy systems, and precision farming. He has a broad and in-depth background and experience in coftware engineering. In parallel, has increasingly taken a holistic systemic approach to ablye real industrial problems. With this, he has ample experience in software and systems architecting, software and systems product line engineering, model-driven software engineering, aspect-priented software engineering, global suftware development, systems engineering, system of systems engineering, data science, and artificial intelligence. All of these topics, he is also actively teaching. He has developed and taught around 20 different academic courses and has provided software/systems engineering courses to more than 50 companies in The Netherlands, Germany, and Turkey,

He has graduated more than 50 MSc students and supervised more than 20 PhD students. He has reviewed more than 100 national and international projects and is a regular reviewer for more than 20 international journals. He has also been very active in scientific conferences and organized more than 50 conferences/workshops on software engineering topics.

He can communicate in five languages (English, Dutch, Turkish, French, German).

https://www.linkedin.com/in/bedir/

https://www.researchgate.net/profile/Bedir Tekinerdogan

People of the Information Technology Group

prof.dr.ir. B (Benitr) Tekinemingen

and Thearen Links

Ordersteller , Erstrie

step, Post 17 and 1 inclusion

Analytics Profession

Intelliging and out

Chair

on Thinks (Adding!

law-month stored

on in it (Ryantee)

BAARD CONTRACTORY

Station in the

PhD Candidates

Ent (Hale) Cost

An end of the local distance of the local di

P----

Proprietation and provide the local division of the local division

C Distant Auto real inscription

P. LOT LANDING.

from containing

Well-involution

P.J. J.F. Same Property lines, Spininternet. It is to make sind the second Property lies

LA TIME PARAM NO

Add Lines Towner ES. PhD Candidate

Water and

training .

Filmments

PF; [Prodicted Science Alward a

104 (Pacipe +O.D.P.C.

a. ins. (Passie-) 7 in Hoturer . Decent.

+ Number Contemport 140 Petersetologi A second states

C ICLINENT Principle

Pristmenticital

Petermentities

C (Company) Name P commenciati

Secretary and other

on the late to be do. SAMP. interned as in

Bedir Tekinerdoğan

Architecting IoT-based Farm Management Information Systems

Professor

Derteteper Dig bei Laarring Haterial/ Lamon

Fattane Zarrinkalam

To be hired Assistant Professo

419 I barded bissense Incentory.

and did to the local land

Partnersk Fredamer

Archow Society

#-210math1144

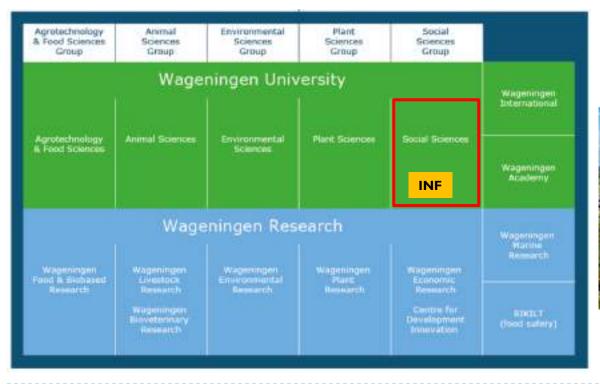
at the Asland Percents

Autoinet Prolesson

Delani

A Statement

Painterile.

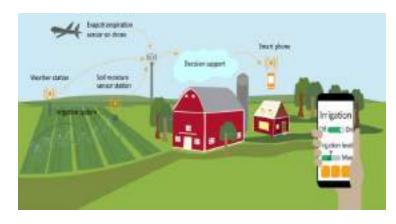

Will Hurst Assistant Professor

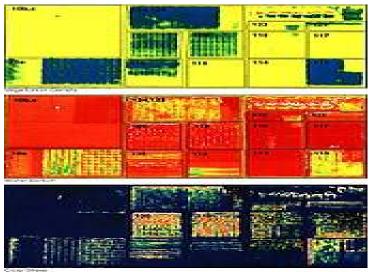
Restautos

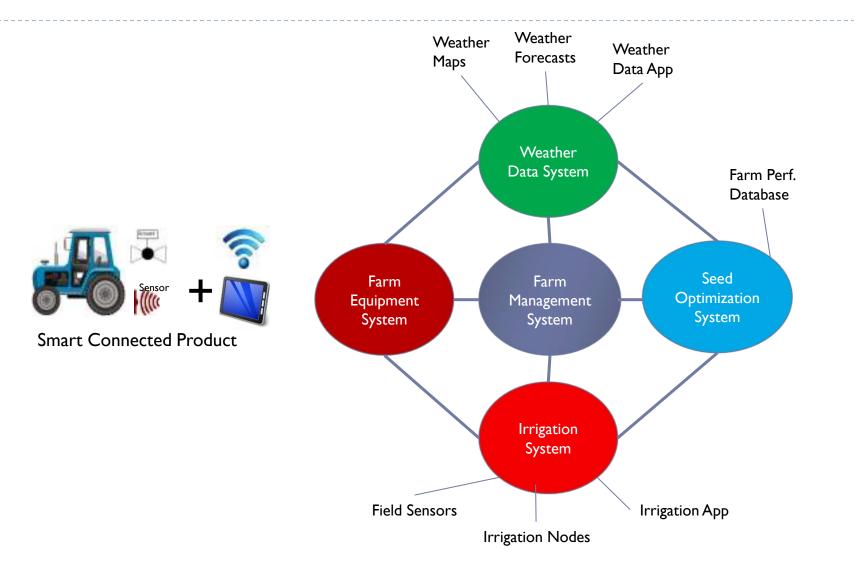
Assistant Professor

Wageningen University & Research

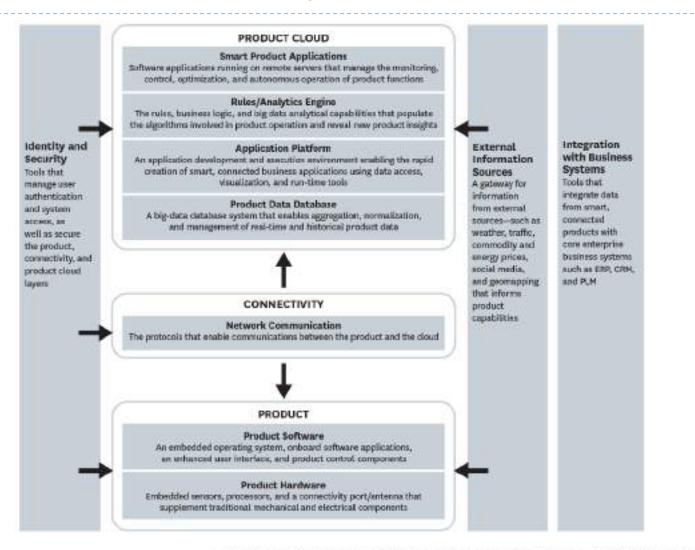
- Focus on *life sciences*, which comprises the branches of science that involve the scientific study of **living organisms**,
- like plants, animals, and human beings.



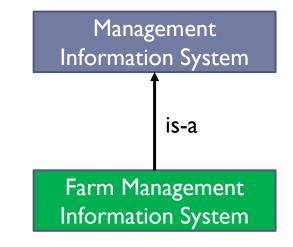



Precision Farming

- Precision agriculture (PA) is a farming management concept based on observing, measuring and responding to inter and intrafield variability in crops.
- define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources.
- an application of breakthrough digital farming technologies
 - Robotics
 - Drones and UAV
 - Internet of Things
 - Cloud Computing
 - Machine Learning/Deep Learning
 - Software Engineering



Farming System-of-Systems


Connected Smart Systems

SOURCE "HOW SMART, CONNECTED PRODUCTS ARE TRANSFORMING COMPETITION," HBR, NOVEMBER 2014

Farm Management Information System

- Management information system (MIS) is an information system used for decision-making, and for the coordination, control, analysis, and visualization of information in an organization.
- Involves people, processes and technology in an organizational context.
- the ultimate goal of the use of a management information system is to increase the value and profits of the business
- Farm management information systems (FMIS) is an MIS that supports the automation of data acquisition and processing, monitoring, planning, decision making, documenting, and managing the farm operations.
- A key element of smart farming

INF Research – Farm Management Information Systems

Computers and Electronics in Agriculture Volume 197; February 2019, Pages 398-304

Review

Obstacles and features of Farm Management Information Systems: A systematic literature review

J. Turrenerk, A. Katsalhan, B. Tekinerdogan A (B)

Computers and Electronics in Agriculture Values 145, Deceber 2019, 104929

Original papers

Architecture framework of IoT-based food and farm systems: A multiple case study

Cor Verdouv *** # Ø, Handd Sundmaeker *, Bellin Tekinerdogan *, Davide Conton *, Tesdoro Montanaro *

Open Access | Published: 01 June 2020

Reference architecture design for farm management information systems: a multi-case study approach

1. Tummers: A. Kassahun & 8. Tekinerdogan 🖂

Precision Agriculture (2020) Cite this article

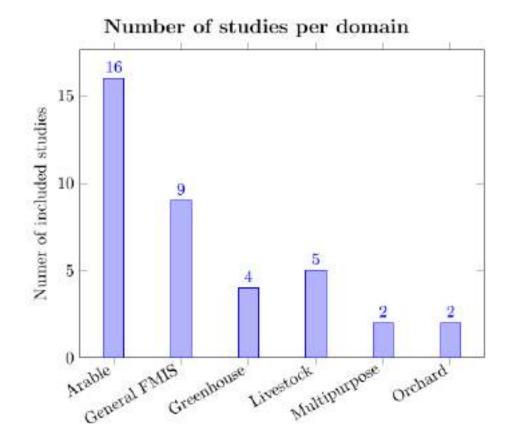
Open Access | Published: 11 December 2018


Architecture design approach for IoT-based farm management information systems

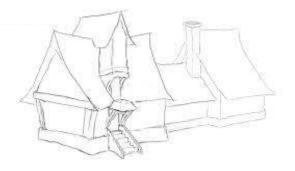
🗓 Kóksal 🖾 & B. Tekinerdogan

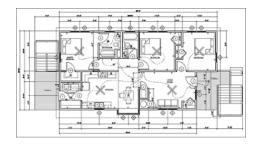
Precision Agriculture 20, 926-958(2019) Cite this article

Bedir Tekinerdoğan

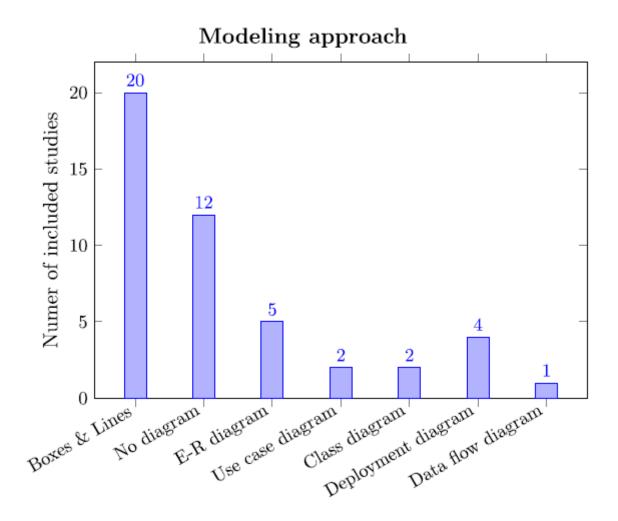

Obstacles of FMIS

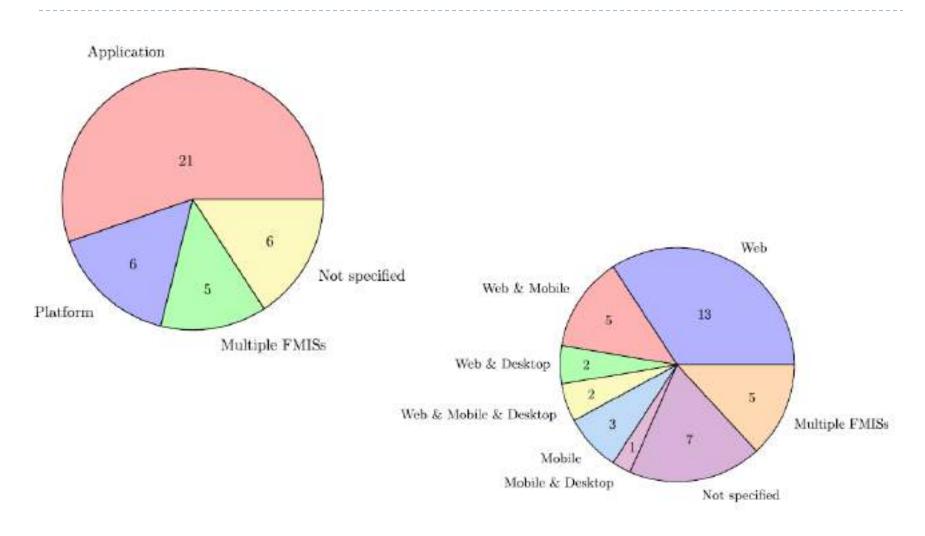
Source	After automatod and menual starch	After applying selection criteria	After reading complete stud and quality assessment	
IEEE Xplore	111	20	7	
ACM Digital Library	102	10	5	
Wiley Interscience	120	1	0	
Science Direct	138	7	6	
Springer	135	6	1	
ISI Web of Knowledge	422	14	7	
Manual search	20	20	12	
Total	1048	78	38	


Overview of search r	results and study	selection.
----------------------	-------------------	------------


FMIS Domains

Maturity of Models...


- Sketch simple drawing model; not precise or complete, nor is it intended to be. The purpose of the sketch is to try out an idea. The sketch is neither maintained nor delivered.
- Blueprint document/design model describing properties needed to build the real thing. In other words, the blueprint is the embodiment of a plan for construction
- Executable software model that can be compiled and executed; can be automatically translated into other models or code



FMIS Modeling Approaches

FMIS Delivery Models

FMIS Stakeholders

The identified stakeholders and their relationship to FMISs.

Stakeholder name	Description	#
Farmer	Responsible person on the farm and end-user of the system.	38
Governmental	Umbrella term for multiple stakeholders that relate to the government. Has an interest in FMIS for registration purposes, and to obtain farm information	10
Agricultural expert	Has expert knowledge about the agricultural sector and can be used for requirements for FMISs.	7
Farm employee	Works on the farm and has to work with the FMIS.	6
Research Institute	Multiple kinds of researchers and institutes can be used as knowledge input for FMISs.	6
FMIS developer	Develops the FMIS and its underlying software.	5
Input supplier	Delivers inputs to the farm, these inputs can be registered in an FMIS	5
Agricultural advisor	Helps the farmer with making decisions based on their knowledge, an FMIS can assist them.	4
Agriculture service provider	Assists the farmer with the providence of services. Can use FMIS for registration purposes.	4
Contractor	Hired by the farmer to perform field tasks. FMISs can improve the communication with the farmer.	4
Equipment producer	Makes new machinery for the farmer, an FMIS can provide machinery management.	4
Customer	Companies and other entities greater than an individual consumer. FMIS can provide details about the purchased products.	3
Administrator	Can setup system, and manages the FMIS. Is not necessary the FMIS developer.	2
Farmers association	Organized group of farmers with common interests. Want FMIS for implementation of modern technology.	2
Neighbour	Is influenced by decisions of FMIS (Odor nuisance, noise disturbance, etcetera).	2
Non-governmental	Group of persons with their own (ecological) interest that can be intertwined with the FMIS.	2
Product processor	FMIS can provide information on products coming from the farm.	2
Veterinarian	Can use the FMIS for retrieving animal information and can register veterinarian actions.	2
Accountant	Can use the financial modules of FMISs to verify and assist the farmer with bookkeeping.	1
Equipment dealer	Can provide machinery support and services via the FMIS.	1
Media	Provides communication with the outside world and has an influence on the farm image.	1
Weather service provider	Provides weather information as input for the FMIS.	1

FMIS Features

Identified Features in descending order.

Financial management	17	Expert knowledge	5	Transport management	2
Reporting	1.4	Livestock management	S	Calibration management	2
Data aquisition	13	Sales	5	Experience management	2
Operation plan generation	10	Harvest management	4	Marketing and sales	2
Crop management	10	Machinery tracking	4	Reproductivity management	2
Resource management	9	Pesticide management	4	Weighing management	2
Equipment management	9	Scheduling	4	Best practice	1
Field monitoring	9	Work management	4	Collect produce information	1
Data processing	9	Knowledge management	4	Communication	1
Fertilization management	9	Legal management	4	Condition management	1
Human resource management	7	Activity monitoring	4	Delivery management	1
Weather service	7	Customer management	4	Feed management	1
Data management	7	Alerting	4	Grazing management	1
Field management	7	Production monitoring	3	Herd management	1
Accounting	7	Seed management	3	Printing	1
Inventory management	7	Yield monitoring	3	Real estate management	1
Decision support	б	Parameter monitoring	3	Remote controlling	1
Operation management	6	Data sharing	2	Risk analysis	1
Yield estimation	6	Driver assistance	2	Society management	1
Field mapping	б	Energy management	2	Supply management	1
GIS management	б	Health management	2	Task file management	1
Irrigation management	6	Information search	2	Task supervision	1
Sensor management	6	Model production parameters	2	Vision planning	1
Traceability	6	Performance management	2	B2B Collaboration	1
Data transfer	5	Scenario simulation	2	Company information	1
Data storage	5	Strategic planning	2	Environmental monitoring	1
Disease management	5	Technology management	2	Planting management	1

FMIS Features

- **Financial management**: Is defined out of the sub-features coming directly from the studies like making a billing plan, financial analysis, financial planning, calculate economic results, and budgeting.
- **Reporting**: Consists of sub-features coming from the data synthesis like documentation generation, report making, and automation of filling in documents. This feature occurs over multiple domains.
- > Data Acquisition: Is described as the collecting of data coming from the farm. Also occurs over multiple domains.
- **Operation plan generation**: Making a plan about how the farm will be managed regarding its strategy and execution. Occurs over multiple domains and is a very general, broad term.
- Crop management: The selection of crops, getting information from the crops, checking the quality of the crops and more crop related sub-features.
- **Resource management**: The process of using the companies resources as efficient as possible. This feature is mainly present in studies that describe FMIS in general.
- **Equipment management**: Includes all sub-features that relate to the equipment on the farm like tractors, implements, and other machinery.
- Field monitoring: Mainly occurs in the domain of arable farming. Consists of sub-features that monitor the farmland status and their parameters.
- > Data processing: Occurs over multiple domains. Makes sure raw data is converted into useful information for farmers.
- **Fertilization management**: Everything that has to do with the fertilization of the fields, like determining the fertilizing frame, making a fertilizing plan and the tracking of fertilizers. Occurs mainly in the arable farming domain.
- > Human resource management: The management of labor, its main goal is to improve the performance of the employees.
- Weather service: Includes all sub-features related to the weather; weather forecasting, climate forecasting, and information about the previous weather.
- **Data management**: Includes all the sub-features that deal with data or are controlling data.
- **Field management**: The field operation management and field-specific management.
- Accounting: The recording of transactions and the keeping of financial records.
- **Inventory management**: The management of the inventory and stock.

<u>....</u>

Obstacles of FMIS

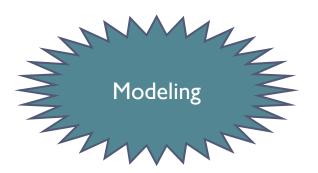
Identified Features in descending order.

Financial management	17	Expert knowledge	5	Transport management	2
Reporting	14	Livestock management	5	Calibration management	2
Data aquisition	13	Sales	5	Experience management	2
Operation plan generation	10	Harvest management	4	Marketing and sales	2
Crop management	10	Machinery tracking	4	Reproductivity management	2
Resource management	9	Pesticide management	4	Weighing management	2
Equipment management	9	Scheduling	4	Best practice	1
Field monitoring	9	Work management	4	Collect produce information	1
Data processing	9	Knowledge management	4	Communication	1
Fertilization management	9	Legal management	4	Condition management	1
Human resource management	7	Activity monitoring	4	Delivery management	1
Weather service	7	Customer management	4	Feed management	1
Data management	7	Alerting	4	Grazing management	1
Field management	7	Production monitoring	3	Herd management	1
Accounting	7	Seed management	3	Printing	1
Inventory management	7	Yield monitoring	3	Real estate management	1
Decision support	6	Parameter monitoring	3	Remote controlling	1
Operation management	6	Data sharing	2	Risk analysis	1
Yield estimation	6	Driver assistance	2	Society management	1
Field mapping	6	Energy management	2	Supply management	1
GIS management	6	Health management	2	Task file management	1
Irrigation management	6	Information search	2	Task supervision	1
Sensor management	6	Model production parameters	2	Vision planning	1
Traceability	6	Performance management	2	B2B Collaboration	1
Data transfer	5	Scenario simulation	2	Company information	1
Data storage	5	Strategic planning	2	Environmental monitoring	1
Disease management	5	Technology management	2	Planting management	1

Obstacles of FMIS

- **Standardized data formats:** Causes problems with the interoperability between different systems and components.
- **System integration**: FMISs and their components do not integrate with each other easily. Results to problems with interchangeability between applications and platforms.
- Adoption rate of FMIS: The adoption of new technologies in agriculture is rarely instantaneous and multiple factors influence the decision-making processes and can therefore be a result of multiple obstacles.
- Cost of FMIS: Farmers find FMISs too expensive, or they are not able to see the profitability potential of an FMIS.
- Incomplete FMIS: Multiple FMISs are specialized for one specific task on the farm. However, these systems are therefore missing features that will cause the farmer to use multiple FMISs, instead of one FMIS that can provide in all needs.
- Understandability: Current FMISs are not always easy to understand and use for farmers, due to difficult user interfaces or other factors that make them complex.
- **Data size**: The accumulation of data over the years is seen as a concern
- **Connection to internet**: Some FMISs are only accessible with an active internet connection; this connection is however not always reliable in more rural areas.
- Insufficient farmer skills: Farmers frequently have a low level of education, and therefore farmers are not always able to obtain the full potential of FMISs.
- Language and regional: Sometimes FMISs are only available in one language. Furthermore, there are big regional differences between countries concerning agricultural practices; FMISs can therefore not always foresee in all farmers needs due to these differences.
- **Security**: There are currently concerns about the security and privacy of the data that is used in the FMIS.

Architecture Design of FMIS


Computers and Electronics in Agriculture Values 185, Databer 2019, 194929

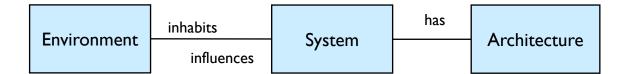
Architecture framework of IoT-based food and farm systems: A multiple case study

Converdoow *** # 89, Hannid Sundwacker *, Bellin Telkherdogan *, Davide Conzon *, Teodoro Montanario *

D Springer Link

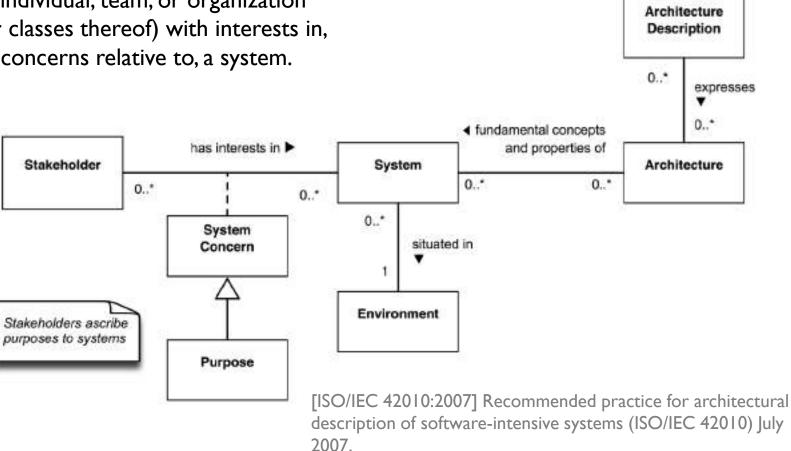
Open Access | Published: 11 December 2018 Architecture design approach for IoT-based farm management information systems

D. Kóksal 🖾 & B. Tekinerdogan

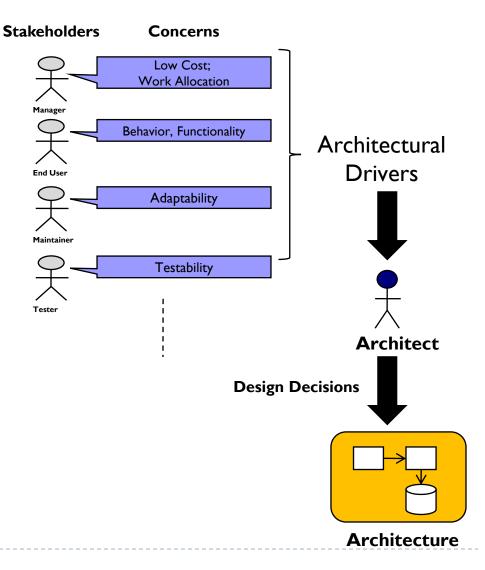

Precision Agriculture 20, 926-958(2019) Cite this article

Architecture

Software architecture is the fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution"


> IEEE. IEEE Product No. : SH94869-TBR: Recommended Practice for Architectural Description of Software Intensive Systems. IEEE Standard No. 1471-2000. Available at: http://shop.ieee.org/store/.

Architecture Stakeholders

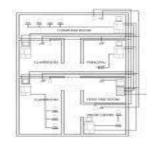

system stakeholder:

an individual, team, or organization (or classes thereof) with interests in, or concerns relative to, a system.

Architectural Drivers

- Stakeholder is any person who has interest in the architecture
- Each stakeholder can have different concerns
- Each concern puts forces on the architect and influences the early design decisions that the architect makes.

Multiple Views of the Architecture...

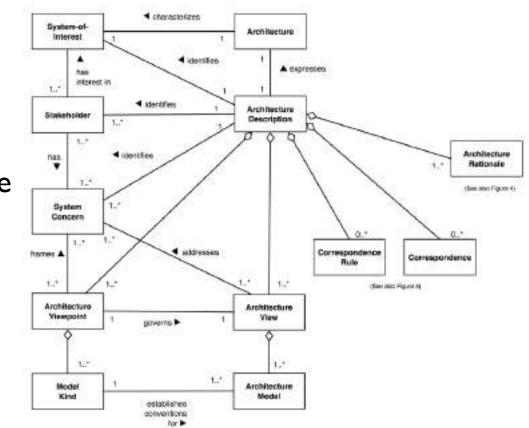

Floor plan

Interior Plan

Wiring Plan

Bedir Tekinerdoğan

Architecting IoT-based Farm Management Information Systems


Architectural Viewpoints

View:

 a representation of a system from the perspective of one or more concerns which are held by one or more stakeholders.

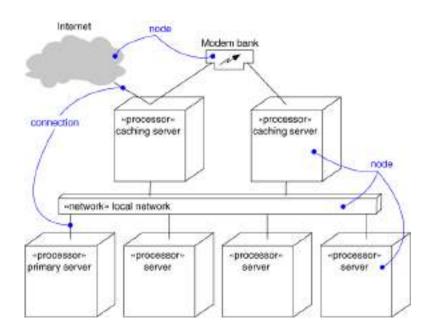
Viewpoint:

 A pattern or template from which to construct individual views.

[ISO/IEC 42010:2007] Recommended practice for architectural description of software-intensive systems (ISO/IEC 42010) July 2007.

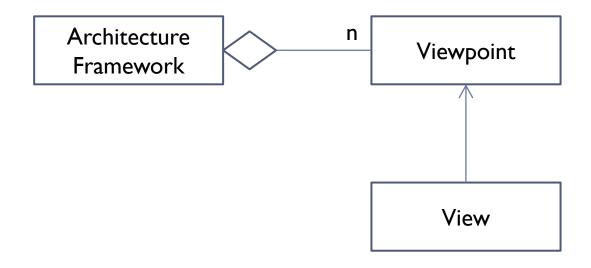
Example – UML Deployment Viewpoint

Viewpoint


- Name: Deployment Viewpoint
- Stakeholders:
 - System Designer
- Concerns:
 - System Design
- Components:
 - Processing Nodes
- Notation

\square	
	IJ

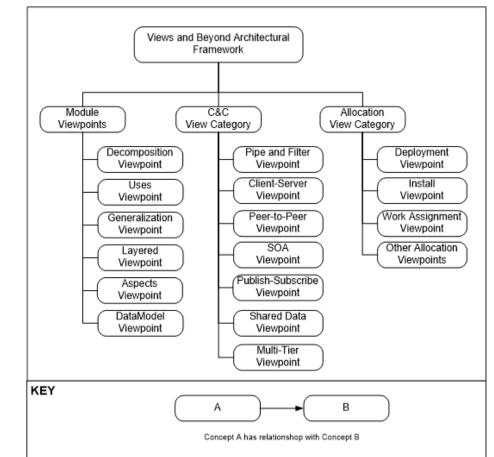
Node


Connection

Deployment View - Example

Architecture Framework

- Coherent set of viewpoints
- Each viewpoint addressing single concern
- Separation of Concerns


Example Architecture Framework

Module Styles

- How is the architecture structured as a set of implementation units?
- Component-and-Connector Styles
 - How is the architecture structured as a set of elements that have runtime behavior and interactions?

Allocation Styles

How does the architecture relate to non-software structures in its environment?

P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, J. Stafford. Documenting Software Architectures: Views and Beyond. Second Edition. Addison-Wesley, 2010

Architecture Frameworks

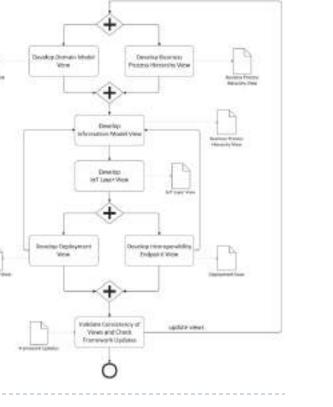
http://www.iso-architecture.org/42010/afs/frameworks-table.html

Last Updated: 09/14/2016 21:00:21

Survey of Architecture Frameworks

The specification of architecture frameworks is one area of standardization in ISO/IEC/IEEE 42010:2011 (the international revision of IEEE 1471:2000).

WG42 is collecting examples of architecture frameworks, listed below.


ID.	Name	Purpose	Scope	Classifiers	Notes
AF EAF	Air forse Enterprise Architecture Framework	The AF Enterprise Architecture Framework (AF-EAF) provides a logical structure for classifying, organizing and relating the breadth and depth of information that describes and documents the Air Force Enterprise Architecture (AF- EA)."	Air Force IT tystems	Communication, Geidance, Enterprise Architecture Descriptions	The AF-EAF does not define the AF- EA content, rather it consists of various approaches, models, and definitions for communicating and facilitating the presentation of key architecture components (i.e. architecture vision, greenener prequired for the content AF-EAF established foundation of AF earth AF-EAF established foundation of AF earth AF-EAF established foundation of AF earth AF-EAF established foundation of AF earth AF-EAF established foundation of AF earth architecture does architecture of generating (AF quotes fouries can June 2003)
AFIoT	IEEE P2413 – Architecture Framework for the internet of Things	"This standard defites an architectural framework for the Internet of Things 00T), including descriptions of various IoT domains, definitions of IoT domain			The architectural frattework provides a reference model that defines mithlombjas among various let verticals (e.g., transportation, healthcare, etc.) and common architecture elements. It also provides a blueprint for data abstraction and the quality 'quadruple' that that includes provides a subsection provides and provides a blueprint for data abstraction and the quality 'quadruple' that that includes provides the provides and provides the provides the provides and provides the provides th

FMIS Architecture Framework

Architecture framework of IoT-based food and farm systems: A multiple case study

Converdouw *** # #. Harald Sundmarker 5. Bedin Telliherdogan 5. Davide Contain *. Teodoro Montanaro *

- with Republicher of Distances Develop Districtive Model Develop Bowness 1000 Internet (Rended)ins Varia Come later Researching Model View Dave inc left Lune+View
- Domain model viewpoint: general view of key functional aspects of an IoT-based system
- Business process hierarchy viewpoint: overview of business processes and their interrelations
- IoT layer viewpoint: classifies IoT functionalities into different technical layers ranging from device layer until application layer
- Deployment viewpoint: visualizes the location of hardware and software components and how they are deployed
- Information model viewpoint: depicts the data entities of an IoT-based system, including data models of databases used, specifications of raw data collected by deployed IoT sensors, standard identification schemas, data entities in communication protocols, etc.
- Interoperability endpoints viewpoint: defines main interfaces for integration with external systems including standards and protocols to be used, derived from the information model viewpoint;

Specify Dignetate

Otherthal

Adopted Case Studies

Trial/ sector	Canal	Challenge	Focal Country	Chain Role	Adopter Typs	Conven- tional / Organic
Andolis	1.1 Witten-field maragement zoning	Defining specific field management arrest by developing and linking sensing- and actuating devices with external data	NL -	Parming, Logistics	Early adoptors and mejority	Doth
Arable	1.2 Precision Crop Hanagement	Smart wheat crop management by sexuars data embedded is a low- power, lang-range network infrastructure	FR.	Farming	Majority	Conven- tional
Arolsis	1.3 Soya Protein Hanagement	Improving protein production by combining sensor data and translate them into effective machine task operations	AT, IT	Perring	Early Adopters	Bolfy
Arable	1.4 Parm Plachine Interoperability	Data anthonge between field machinery and farm management information systems for supporting communication communication	DK	Parrieg	Higenty	Conven- tional
Dery	2.1 Grazing Cow Heritor	Nonitoring and managing the outdoor gatering of cows by GPS tracking within altra-narrow band communication metworks	ÐE.	Farming	Both	Both
Dairy	2.2 Нарру Сож	improving dany farm productivity through 3D core activity serving and cloud machine learning technologies	NL -	Panning	Early Adopters	Both
Dairy	2.3 Silert Herdunian	hard alert management by a high node count distributed sensor network and a cloud-based platform for decision-making	UN .	Parming	Најонту	Conven- tional

Intel/ sector	Case	Oallinge	Focal Country	Chain Role	Adopter Type	Corwan tional / Organic
Giery	2.4 Remate 198 Quality	remote quality assurption of accurate instrumients and analysis. It pro-entries control in the dairy thans.	н.	Processing, Concemption	Higority	0401
Frød	3.1 Wesh toble grapes chain	ical-One nonstance and control of water supply and cop protection of table grapes and predicting shaff Ma	ξΤ, QH	Foreina). Logatica	Early Adoptors	5kth
Pijašt -	3.2 dag witer optimization	aptimizing calibration and processing of wire by sensor- actuator networks and big data analysis within a doub ingreework	P.6.	Гастанд, Россилитр	Early Adopters	ben
frait	3.3 Automated alive chain!	automated Sold control, product septembation, processing and commercialization of shore and altert of	9/17	Farmeng, Processing, Logistics	mpoty	Conventional
na.	3.4 Intelligent from togethes			Logistics, Cansamption	Наротар	ben
Vega	4.1 Oty Serving	value chain innovation for leafy argetables in conversesce faults by integrated indeer climate control and legistics	16.	Patrolog, Loostice	Early Adopters	Conver- tional
Vege	4.2 Cham- relegisted greenfoose production	integrating the value chain and packty introductor by developing a full sensor actuator-based spikers in tomate precrimates	8	forming, Logistics, Conservation	Magonity	bem
Veps	4.3 Added value weeding data harvesting seeding data of organic negotiables data and by advanced intervention		HL, AT	Forenny	Hajority	Organii
Vege	 4.4 Enhanced infrances trust and simplification guildry certification optimits by certification and second activity of second activity and realignet chain real-years 		ti.	Parentika, Logattica, Carelampteri	Hajordy	Defis
Fleat	5.1 Pig kerni managament			Formerg, Processing, Carsonpton	Doth	Deffs
Phote:	\$29xxtry.dom resignent	eptimize production, transport and processing of positry treat by automated arithmst monitoring it control and data analyses.	₽.	Forming, Logistics, Processing	Hajorty	Conventional
Heat	5.3 Most Transpirency and Transidulity	elfancing transparwidy and traceability of react based on an tracedored chain event sites in an ECCS-infrastraction	06, M	Farming, Logistics, Processing, Concernation	Марнату	Reff.

Adopted Case Studies

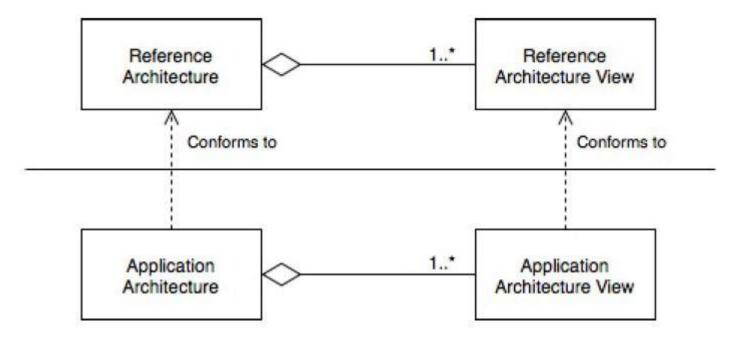
Number of main elements addressed in each viewpoint

When canve	Dornia: cracepts	Layers foil baselines	Desiros Process Hierarday Objects/Pro- omnes	Deployraem: nodec/sonapo nests	latoreations data elevatoris	Interoperate Ty Designments
1.1 Within Seki rical age onst strong	15	14	910	2/16	N.R.	2])
1,2 Porcieus Crap. Hanagement	16	19	5/12	10/38	25	53
1.3 Soya Protein Hanagement	0	×.	W10	\$/10	N.A.	3/
1.4 Powe Machine Intersperatelity	19		819	\$V16	19.	4
2.1 Grazing Con Montor	n.		911	36		5
2.2 Happy Cow	30.	9	4/10	5/11	99	3
2.3.5 deve Handoman	n		915	5/9	*	4
2.4 Mercube Pills Quality	n	D.	2710	4/15	14	,
1.1 freeb table grapes share	21	13	9/17	6,59	10	40 - E
3.2.8 g wire optimization	an i	33	10 42(2) 32(12		£.	N.A.
3.3 Automated office chaits	10	13	2010	3921	•	3
3.4 biteRgent hait logotax	19	18	31/18	8/16	18	3
4.5 City burning	16	10	NA:	6/2	2	4
4.2 Chain- integrated preseticues prediction	9	4	602	5.9	\$.	5
 Added value wanding data 	26	18	417	31/48	ņ:	4
6.4 Enhanced caselity certification system	30	23	800	1022	993	(1)
5,1 Alig farm mail-approach	25	12	2017	MOT.	в	32
6.2 Nodity close management	38	10	6/13	18(3)	14	93
5.3 Neal Transparency and Transparency	10	10	66	5/9	it."	D)

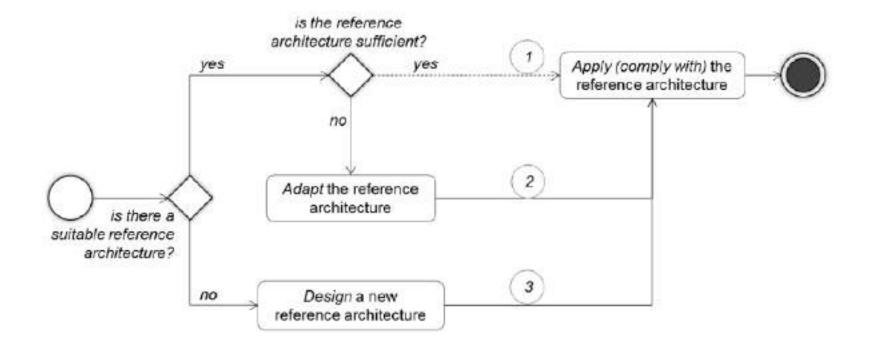
Obstacles of FMIS

- **Standardized data formats:** Causes problems with the interoperability between different systems and components.
- **System integration**: FMISs and their components do not integrate with each other easily Regulated problems with interchangeability between applications and platforms.
- Adoption rate of FMIS: The adoption of new technologies in agriculture influence the decision-making processes and can therefore be a result of mage.
- Cost of FMIS: Farmers find FMISs too expensive, or they are not able ted
- Incomplete FMIS: Multiple FMISs are specialized for one specific task on the missing features that will cause the farmer to use multiple FMISs, instead of one FM
- Understandability: Current FMISs are not always easy to understand and use for farmers, due to difficult user interfaces or other factors that make them complex.
- **Data size**: The accumulation of data over the years is seen as a concern
- Connection to internet: Some FMISs are only accessible with an active not always reliable in more rural areas.
- Insufficient farmer skills: Farmers frequently have a low-level obtain the full potential of FMISs.
- Language and regional: Sometimes FMISs are only available in sup between countries concerning agricultural practices; FMISs can there differences.
- **Security**: There are currently concerns about the security and privacy of the data that is used in the FMIS.

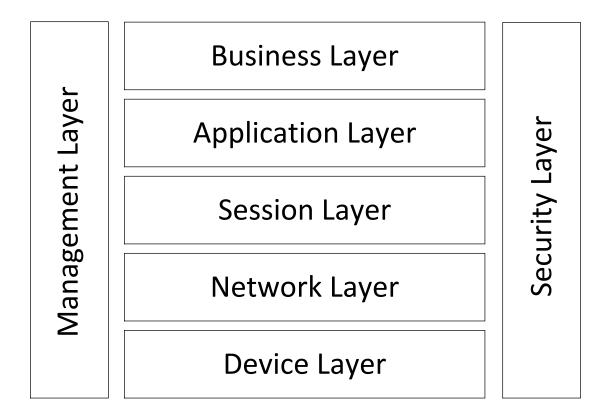
Multi-System Scope Reference Architecture Needed!

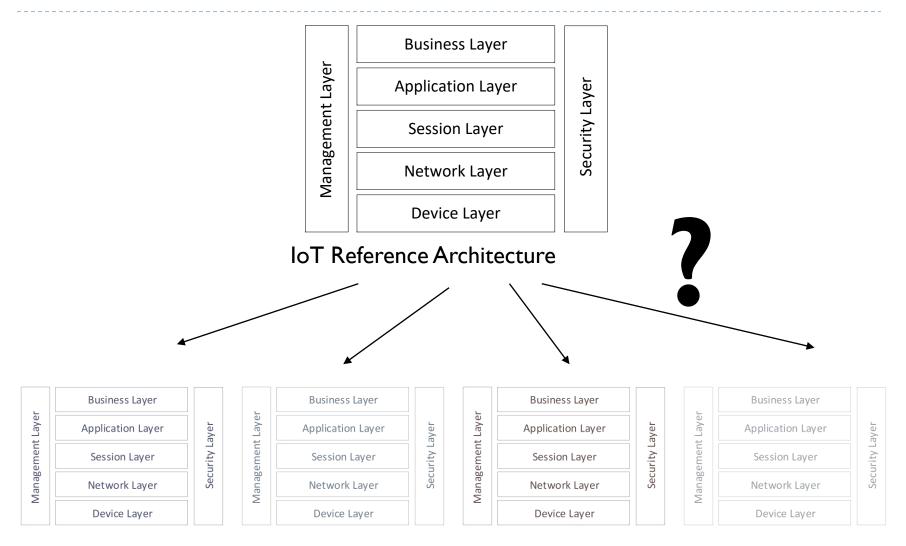

Variability

nue lifferences


tion is however

therefore

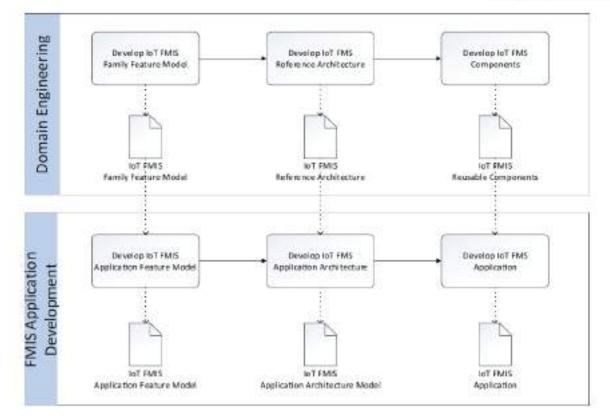

Reference Architecture vs. Application Architecture


Reference Architecture Design

IoT Reference Architecture

Reference Architecture vs. Application Architecture

IoT-based FMIS Architecture Design Approach

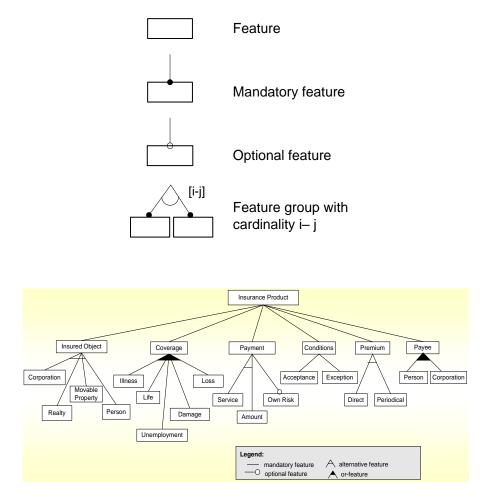

D Springer Link

Open Access | Published: 11 December 2018

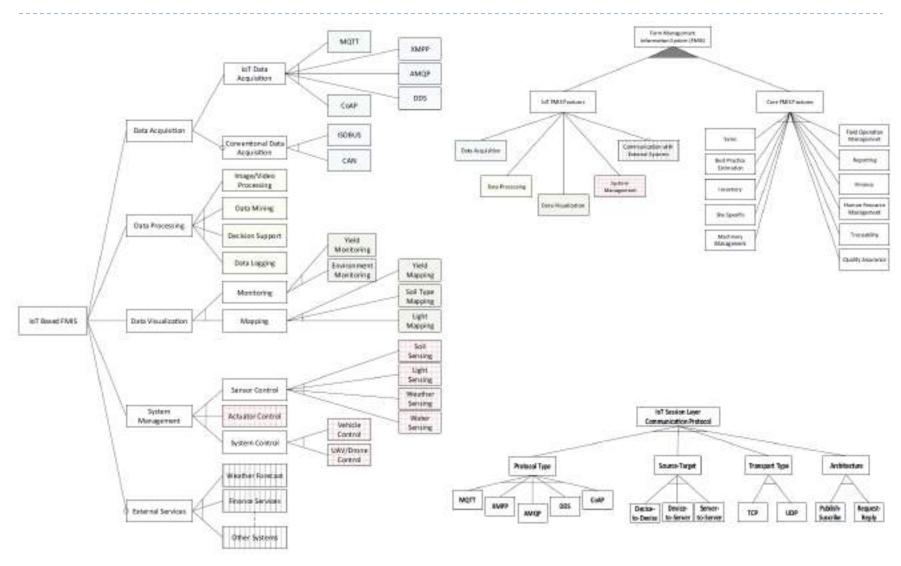
Architecture design approach for IoT-based farm management information systems

D. Koksal 🖾 & E. Tekinerdogan

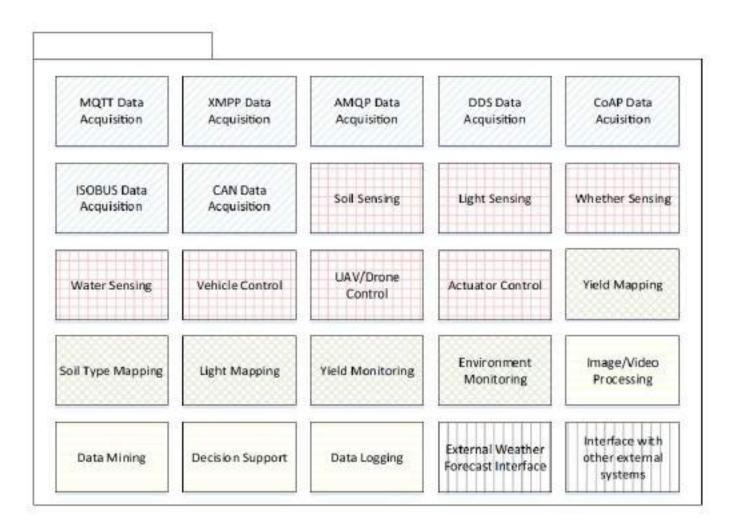
Precision Agriculture 20, 926-958(2019) Cite this article

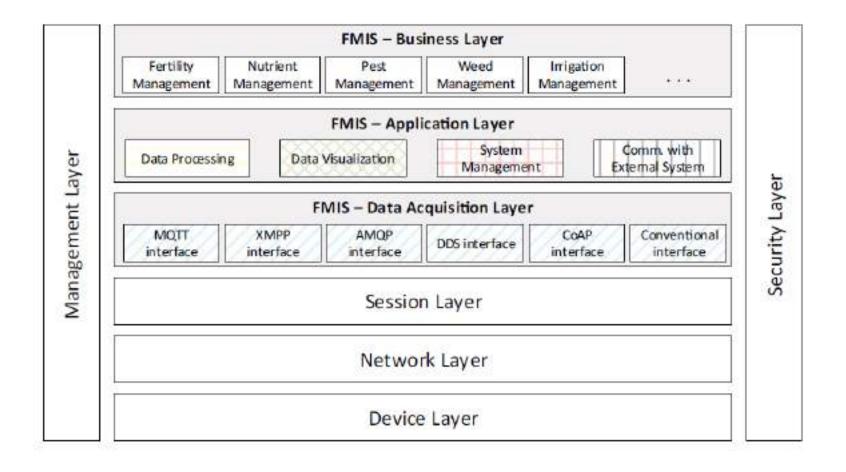


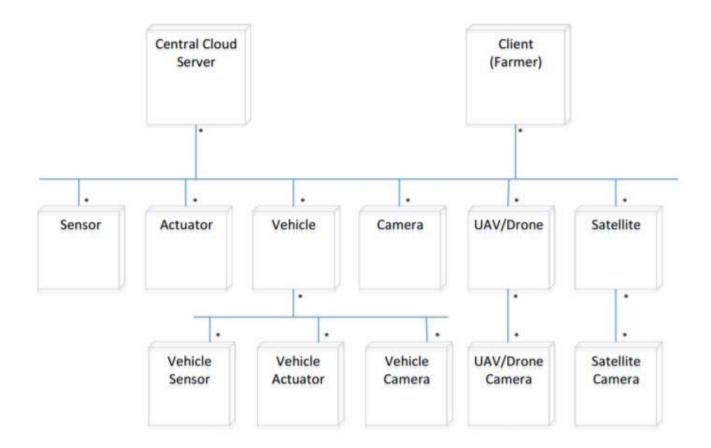
Feature-Oriented Domain Modeling

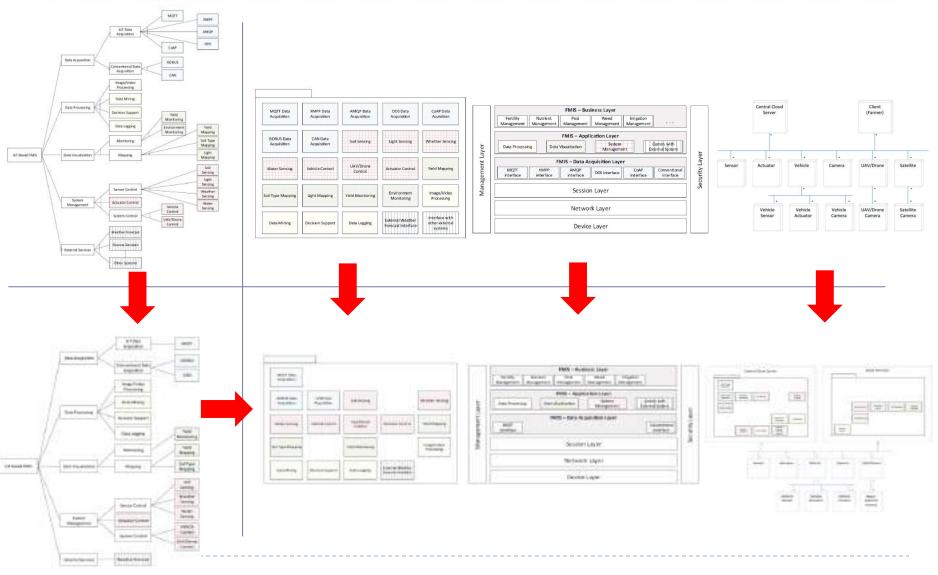

• A **feature model** represents the common and the variable features of products and the dependencies between the variable features.

• Feature:


- a distinctive property of a concept (domain model)
- user visible characteristic of a system (requirements).
- A feature diagram consists of a set of nodes, a set of directed edges, and a set of edge decorations.


Feature Model for IoT


FMIS Decomposition View


FMIS Layered View

FMIS Deployment View

Case Study – Smart Wheat Production

Conclusion...

- FMIS is a business-critical element of smart farming and needs to be properly designed/implemented
- We have carried out a set of systematic research activities on exploring the architecture modeling and design of FMISs
- Systematic Literature Review has provided the key features, obstacles, and modeling approaches of FMIS
- Architecture Modeling and Design of FMIS is limited and requires further research
- We have developed an architecture framework including a coherent set of viewpoints for supporting the modeling of FMIS
- We have developed a reference architecture that can be used to design an FMIS
- Future work will include the development of farm management software ecosystem